我读初二的时候,其中一本教材就是薄薄的《常用对数表》。当时很好奇,这个常用对数表是怎么算出来的。昨天看到李永乐对比3的361次方和10的81次方大小,又想起来这个初中时候的疑惑。网上搜到这个文章,觉得很有收获,转帖给大家。虽然不一定是当时人的算法,但是也可以开拓我们的思维。
回到十七世纪,让我来编算一本常用对数表
自十八、九岁学习了对数后,就觉得造对数表真不简单。据说十七世纪那时,说如果谁发现了对数表上有一个数字错,就奖一两黄金。
据百科百度:纳皮尔(1550~1617年),苏格兰数学家,对数的创始人。他的最大贡献是发明了对数。纳皮尔的杰作《奇妙的对数定律说明书》于1614年6月在爱丁堡出版。纳皮尔的朋友,英国人布里格斯,将纳皮尔创立的对数改为常用对数,它才得到广泛使用。并在1624年出版了《对数算术》,公布了以10为底包含1—20000及90000—100000的14位常用对数表。
1671年,著名的德国数学家莱布尼兹(G.W.Leibnitz)制成了第一台能够进行加、减、乘、除四则运算的机械式计算机。
可见,布里格斯编算常用对数表时,机械式计算机还未发明,看来只能是手算了。
我那时不知道十七世纪是怎样编算对数表的。但我还是想自己亲手来编一份,那怕为数很少也可以,只想弄明白,对数表是怎样编算的。这一心愿几十年来一直没有了结。
想起二十世纪五六十年代,对数表不能离手,少了它就无法工作,真不胜感慨。当70年代用上了飞鱼牌手摇计算机后,就告别了六位对数表。当80年代用上了电子计算器后,又告别了八位函数表和手摇计算机。在电脑已普及的今天,我仍有用手算方法来造对数表的想法,这似乎有点可笑,但“怎样造原始的对数表”的问题,仍牵引着我的心,一直想了此一事。
想不到年老了,竟灵光一闪,得到了一个造表方法,并且可以分配到许多人,各自独立计算不同的数值范围,最后汇集于一起,成为一本对数表,这样就可以较快完成,不必化几年、乃至几十年时间了。
所谓常用对数,就是以10为底时,有方程10^D=Z。如果知道一个数Z (叫真数),则10的指数就是D, D就叫十进对数,也叫常用对数。 给出Z,求D。 并以D = Lg Z表示之。例如10^D=2,给出2,求D。 并以D = Lg2表示之。查对数表可得D = Lg2 =0.30103,即10^0.30103 = 2 。亦即10的0.30103次方等于2。
10的整数次乘方可以算,可是0.30103次方怎么算呢?真是无法理解。但如果说,因为0.30103=30103/100000,那末先算10的30103的次方,再开100000次方,倒是有道理的,但2的对数是0.30103,决不可能是这样算的,所以仍很玄。那么2的对数是0.30103,到底是怎样算出来的呢?
这么一想就有一个启发,就是10的零点几次方,可以这样算:先乘方、再开方,而主要是开方。例如10的开平方,就是10的0.5次方。10的开3方,就是10的0.33333次方等等。受此启发,经反复试算,得到编算常用对数表的步骤和方法:
$1 先求最基础的对数
1 、我想,世界上第一个常用对数,可能就是3.16227766的对数0.5。因为 3.16227766 = √10
= 10^(1/2)= 10^0.5 ,而0.5就是它的对数。10的开方,用笔算可以一次开出,也可以用逐步试算趋近。如先用3.16*3.16=9.9856,不够,再用3.163*3.163=10.004569,超过了一点,再用
3.16228*3.16228 =10.0000147984…最后定为3.16227766。也就是说3.16227766的对数为0.500000。
2、 第二个,可能就是2.15443469的对数为0.333333了。因为2.15443469 = 3√10 =10^(1/3)
= 10^0.33333 ,而0.3333333就是它的对数。10的开3方比较麻烦,可以逐步试算趋近。如先用2.15*2.15*2.15 = 9.9384,不够,再用2.1544*2.1544*2.1544 = 9.99952,还不够,再试,最后定为2.15443469。也就是说2.15443469的对数为0.333333。
3 3.16227766的对数为0.500000。2.15443469的对数为0.333333…这样的对数,我称它们为最基础的对数。最基础的对数需要多少个呢?这里仅算出8个,我想也许够了。 即只要计算:
10的1/2次方,亦即10的开2次方。注意2是素数。
10的1/3次方,亦即10的开3次方。注意3是素数。
10的1/5次方,亦即10的开5次方。注意5是素数。
10的1/7次方,亦即10的开7次方。注意7是素数。
10的1/11次方,亦即10的开11次方。注意11是素数。
10的1/13次方,亦即10的开13次方。注意13是素数。
10的1/17次方,亦即10的开17次方。注意17是素数。
10的1/19次方,亦即10的开19次方。注意19是素数。
就可以得到相应的对数。用这些最基础对数,再去拓展其他的对数。计算这些最基础对数,只要用开方就可以了。开方虽然很烦,特别是开7次方以上时,要逐步、反覆连乘7次以上来校核改进,的确很烦,但毕竟是可以用手工算得出来的。我想,在十七世纪时,也只能这样硬算了。
4 、 而10的开4次方, 10的开6次方, 10的开15次方…就不必了,因为它们可以根据上述最基础的对数,就能方便算出的,不必白费力气了。
由 10 的 开 D 次 方 所 得 的 《基 础 对 数 表》
$2 基 础 对 数 表 扩 充
有了上面的最基础的对数之后,就根据对数基本原理:真数相乘除,对数便加减的方法,可将最基础的对数扩充。例如:
1 (2√10)*(5√10) = 3.162277660*1.584893192=5.01187
相应之对数为:0.500000+0.200000=0.70000
2 (2√10)/(5√10) = 3.162277660/1.584893192=1.99526
相应之对数为:0.500000-0.200000=0.30000
3 这样,扩充后的对数,共96个,见下表:
基 础 对 数 扩 充 表, 由最基础的真数和对数,经真数乘除、对数加减而得。
当然,这个表很小,数量远远不够。但可以作基础,再通过多次交错乘除,得到更多的对数。但要想通过更多次交错乘除,得到全部对数,是不可能的,得另找出路。其实,只要设法先求出“素数的对数”,那就一劳永逸地解决问题了。这张《基础对数扩充表》就为下一步求“素数的对数”作了准备。
$3 求素数的对数(注:采用的二分法)
大家知道,合数是素数的乘积。所以,只要知道素数的对数,就可以用乘除、加减法,算出合数的对数。于是任何数的对数,都可以算出。那末,素数的对数怎样求呢?
分两步:
第一,选择数据(选两个基准点)。在《对数扩充表》内,选择尽量靠近所求素数的两个数。例如,要算2的对数,表中仅有真数1.99526与2.20220 其中1.99526离2很近,选中。而2.20220离2还远,我们就不用它,另找。方法是:仍利用上面的对数扩充表,找到1.95393与1.03273,两个数相乘,得:
1.95393*1.03273=2.01788,(离2很近了),选中。其相应对数为:
0.29091+0.01399=0.30490 。
这样,就取1.99526与2.01788两个数去内插,求2的对数。1.99526与2.01788这两个数,称做逼近值。
第二,内插法(二分法计算)。
真数 对数
a= 1.99526 A=0.30000
b= 2.01788 B=0.30490 求 Z=2 的对数。
在很小区间内(所求值百分之一、二的误差),采用线性内插公式
Lg Z = A+(B-A)/(b-a)*(Z-a)
计算得Lg 2 = 0.30103
这个方法只用到乘,除、加、减,所以可用手算。为减少工作量,最好多采用乘法去找逼近值、内插。
以下是 Lg 2、Lg 3、 Lg 5、Lg 7 、Lg41、Lg 43的计算过程:
数 据 准 备 中 的 真 数 和 对 数 ,来自 《基 础 对 数 扩 充 表》
$5 分工合作、同心协力编常用对数表
最基础对数→对数扩充表→素数的对数→合数的对数,这样的四个步骤,使许多人同时作业成为可能。组织分工如下:
1、先由少数人计算最基础对数。要准,取位要多,如编八位对数表,最基础对数至少要取十位以上。
2、再由少数人,分工计算对数扩充表。最基础对数与对数扩充表便作为公用。
3、组织许多人,同时计算素数的对数。每人分担一段,如1—50 、50—100 、 101—200 、 201—400…在各自范围内,计算素数的对数。素数的对数也作为公用。
4、组织许多人,同时计算合数的对数。也是每人分担一段,既互用成果,又互不干涉。
5、每人每天的成果,汇总公布,以便下一步工作时互相利用,提高工效。